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- Building on work of SCHRUBEN, we'have developed a general framework for
the analysis of standardized time series. Under mild assumptions on the
output process (see (3.1)), the method of standardized time series produces
asymptotically valid confidence intevals for steady—-gtate parameters.
However, these intervals are asymptotically larger (see (5.16)) and more
variable (see (5.33)) then those steady-state intervals obtained by a method
which consistently estimates the appropriate steady-state variance constant
(such as the regenerative method). In this sense, standardized time series
confidence intervals are asymptotically less desirable then those
constructed by consistent estimation.

- These results do not, however, preclude the possibility that standard-
L ized times series may be superior in certain small sample context; this
b remaing an area for future work. ,/,J e L, oy
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1. INTRODUCTION

Let Y = {Y(t) : t > 0} be a real-valued stochastic process
representing the output of a simulation. To incorporate stochastic
sequences {Yn :n> 0} into our framework, we set Y(t) = Y[t]’ where
[t] 1is the greatest integer less than or equal to t. Frequently, a
simulator is interested in estimating steady-state parameters assoclated
with Y. Recently, SCHRUBEN (1983) proposed a new class of procedures,
based on standardized time series, for dealing with the steady-state
simulation problem. Our goal, in this paper is to generalize the method of
standardized time series and to study the structure of such procedures.
Section 2 reviews the basic concepts of weak convergence upon which the
method of standardized time series is based.

In Section 3 the method of standardized time series is introduced and
its basic properties are investigated. Section 4 gives examples of
standardized times series, while Section 5 discusses the asymptotic
behavior of the method. Section 6 provides a short summary of the major

results of this paper.

2. WEAK CONVERGENCE OF STOCHASTIC PROCESSES
Let X = {Xn :n2> 1} be a sequence of real-valued random variables

(RV's). The sequence X 1s said to converge weakly to a r.v. X

(written Xn = X as n + ») if

(2.1) P{X < x} »P{X<x},
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as n + o, for every x which is a continuity point of P{X £ ¢}. This
mode of convergence is frequently used in the study of simulation output
analysis algorithms. For example, the central limit theorem (CLT) is a
weak convergence statement concerning a sequence of normalized partial
sums.

It is well known (see. for example, Theorem 4.4.2 of CHUNG (1974))

that the requirement (2.1) is equivalent to demanding that
(2.2) Ef(Xn) > Ef(X) ,

as n »> =, for every bounded, continuous function f : R + R.

The method of standardized time series requires that one study weak
convergence properties of random elements Xn corresponding to stochastic
processes. Since a stochastic process may be regarded as a random
fuaction, it is natural to generalize to the case where the Xn's take
values in a function space. The precise space that we shall require is
Cc[0,1], the elements of which are continuous functions x : [0,1] + R;
see p. 34-61 of BILLINGSLEY (1968) for a thorough description of this
space.

As (2.2) indicates, the notion of weak convergence depends upon

defining a suitable class of continuous functions. For x,y e C[0,1], let
p(x,y) = sup{|x(t) - y(e)| : 0 <t <1} ;

p(x,y) measures the distance between the two elements x,y.
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(2.3) DEFINITION. A function f : C[0,1}] » R 1is said to be continuocus

if f(xn) + f(x) as n + =, whenever p(xn, x) *0 as n » », where the

xn's and x are elements of C[0,l].

By analogy with (2.2), we can now define a notion of weak convergence
on C[0,1]. Let {Xn :n> 1} be a sequence of random elements taking
values in C[0,1] (in other words, the Xn's correspond to stochastic
processes with sample paths in C[0,1]). If X 1is a random element of
c(o,1], then {Xn :n> 1} 1is said to converge weakly to X (written

X => X) if
n
(2.4) Ef(Xn) > Ef(X)

as n > =, for every bounded, continuous function f : C{0,l] » R.

The method of standardized time series is based on the following
important result, known as the continuous mapping theorem (CMT). For a
(measurable) function h : C[0,1] » R, let D(h) be the set of elements
x ¢ C[0,1] at which h 1is discontinuous (in other words, x < D(h) if
there exists a sequence {xn} € C[0,1] for which p(xn. x) *+0 as n » =»,

with f(xn) # £(x)).

(2.5 ) PROPOSITION. Suppose Xn. X are random elements of C[0,l] such
that Xn = X as n +»o. If P{X ¢ D(h)} = 0, then h(xn) = h(X) as

n -+,
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See p. 31 of [1] for a proof of this result. Loosely speaking,
Proposition 2.5 says that if Xn can be weakly approximated by X, then
the real-valued random variable h(Xn) can be weakly approximated, in
distribution, by h(X), provided that h is suitably continuous. To be of
practical benefit, of course, it is also necessary to choose h's for

which the distribution of h(X) 1is known.

3. STANDARDIZED TIME SERIES

Let Y = {Y(t) : t > 0} be a real-valued (mx-asurable) stochastic

process representing the output of a simulation. To apply the method of "
=

standardized time series to the output process Y, it is necessary to make o
)

the following assumption: -

(3.1) There exist finite constants u and o (o positive) such that

Nk
X => oB ]
n -
as n +» =, where B 1is a standard Brownian motion, and :5
)
iy
/2,3
X = - K
NORS (Yn(t) ue) :{
with M
Y (¢) = [ "Y(s)ds/n , for O
n 0

Note that Xn and B are both processes whose sample paths lie in

i
(a4

fA
—
.

Cc{0,1], so that the weak convergence required by (3.1) is assumed to take

]
~ ]
place in the function space C[0,1]. A variety of different output :
processes satisfy (3.1).
- ]
)
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(3.2) PROPOSITION. Let Y be a stationary (measurable) ¢-mixing

process (see p. 178 of [1] for a definition) satisfying:

(1) EYZ(O) (=

(11 f’ o/ %(e)de < =
0

(1i1) [ cov(¥(0), Y(t))dt > 0 .
0

-]

Then, (3.1) holds with p = EY(0) and 02 = 2 f cov(Y(0), Y(t))dt.
0
For a proof, see p. 178-179, as well as a remark on p. 150, of [1]

(for extensions to non-stationary processes, see p. 179-182 of [1]).

(3.3) PROPOSITION. Let Y(t) = , where {Yn :n>0} 1is a

Y
(el
strongly mixing, strictly stationary sequence (see HALL and HEYDE (1980)

for a definition) satisfying:

(W Ely ¥ <o
) 7« .
n=0
(111) E(Yo-r)2 +2 kzl E(Y,~1) (Y -1) > 0,

where r = EYO; &> 0, and {a(n) : n > 0} 1is the sequence of mixing
congtants. Then, (3.1) holds with p=r and 02 = E(Yo-t)2 + 2 X:=l

E(Yo-r)(Yk-r)-
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For a proof, see p. 132 of [8].

(3.4) PROPOSITION. Let Y(t) = Y[t]’ where {Yn :n>0} is an
associated sequence of strictly stationary r.v.'s (see NEWMAN and WRIGHT

(1981) for definitions) satisfying:

(1) YO is a non-degenerate r.v.

@

(ii) kzl E(Yo-r) (Yk-r) { =, where r = EYO.

Then, (3.1) holds with . = r and 02 = E(Yo-r)2 + 2 Z:=1 E(Yo-r)(Yk-r).

For a proof, see [10].
(3.5) PROPOSITION. Let Y be a (possibly) delayed regenerative process

with regeneration times 0 < T(0) < T(1) < T(2) < ¢+ . Set

T(n)
Y (£) = [ £(¥(s))ds
n T(n-1)

T, = T(n) - T(n-1)
and assume that:

(1) E(Yl(lf!)z + 12

)<

(i1) E(Yl(f) - rtl)2 > 0, where r = EYl(f)/Etle

Then, (3.1) holds with u = r and 02 = E(Yl(f) - rtl)z/Erl.
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For a proof, see FREEDMAN (1967) (the argument given there for the

Markov chain case easily extends to the general regenerative setting).

oo baaaaateal b s g

Let h : C[0,1] » R be the mapping defined by h(x) = x(1l); in other

words, h evaluates x at the point ¢t = 1, It is trivially verified that

RTINS

h(xn) + h(x) whenever p(xn,x) + 0 as n > =, Hence, Proposition 2.5
implies that )
K
]
Xn(l) = gB(l) , 3
or .
(3.6) nl/z(Q(n) - u) =» ¢B(l) i?
"
as n > =, Application of a standard converging—together argument (see p. p
93 of CHUNG [4)) ylelds k
(3.7) PROPOSITION. Assumption (3.1) guarantees that ;
R
Y(n) = .
.
o

as n + @,

3
Thus, (3.1) suffices to guarantee that the steady-state estimation ;
problem for Y makes sense; p 1s the steady-state parameter which the 3
4
simulator wishes to estimate. h

Note that the CLT (3.6) could be used to obtain confidence intervals
for u, provided that o were known. As Schruben points out in [12], the
principle underlying standardized time series is to "cancel out” the a.

The cancellation procedure involves choosing a function g from the
class H; Y is the class of (measurable) functions g : C[0,1] » R

such that:

PR S e RO I S O S PO I N, SR . RIS e PO P i U




(3.8) (1) g(ax) = ag(x) for a > 0, x ¢ C[0,1],
(11) g(x - Bk) = g(x) for B e R and x ¢ C[0,1], where
k(t) = ¢,
(i1i) P{g(B) > 0} = 1,

(iv) P{B ¢ D(g)} = 0.
(3.9) THEOREM. Suppose that g ¢ H. Under Assumption (3.1),

Y (1) -u
(3.10) L 2
g(¥) g

PROOF. Let h : C[0,1] » R be the mapping defined by h(x) = x(1)/g(x)
for g(x) # 0 (and zero elsewhere). Assumptions (3.8iii) and (3.8iv)
allow one to verify that P{oB < D(h)} = 0. Thus, Proposition 2.5

guarantees that

h(Xn) => h(oB)

as n »», By (3.8i), h(oB) = B(1)/g(B) (recall that c’2 > 0).

Furthermore,

1/2 =
n (Yn(l) -
1/2

h(X ) =

g(n (Yn - ku)
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e caata ThDn

iy TR




For the second step, observe that the symmetry of H proves that

H(z(g; 1-6/2)) - H(-z(g; 1-8/2)) = 1-6. Set b = z(g; 1-8/2). Then, for

any « ¢ R, (5.5) yields

H(a+2b) - H(a) < 1-6 .

Thus, in order that H(B) - H(a) = 1-6, it must be that PB-a > 2b; proving
our assertion.
We turn now to the choice of g ¢ M. Our goal is to find g

minimizing

(5.6) ¢(g) = Eg(B) e« z(g; 1-8/2) .

Note that the criterion (5.6) is scale-invariant.

(5.7) LEMMA. For b > O, o(bg) = o(g).

PROOF. Note that z(g; 1-3/2) solves

1 - 8/2 = P{B(1) < z(g; 1-%/2) + g(B)}

P{B(1) g% z(g; 1-%/2) + b « g(B)}

P{B(1) < z(bg; 1-8/2) < b + g(B)}
so that the continuity and strict monotonicity of H {imply that
z(gb; 1-6/2) = % z(g; 1-5/2) .

Relation (5.6) then yields the lemma.

22
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Clearly, it is desirable to obtain confidence intervals with as small

PEPRPRrRr Y vy WLt

an expected length as possible. From Proposition 5.1, it seems reasonable j
to therefore choose a, 8, and g ¢ H such that Eg(B) + (B-a) is i
minimized. 4
(5.3) PROPOSITION. Suppose g < M. Then, for a 100(1-8)% confidence 1

interval, B-a 1is minimized by choosing
B =1z(g; 1 - 8/2) y

a=-f

L

where z(g; x) solves the equation H(z(g; x)) = P{B(1)/g(B) £ z(g; x)} = x

(in other words, the confidence interval should be centered at §n(1))'

PROOF. We proceed in two steps. First, for any a ¢« R and b,y > 0, it

is easily verified that

(5.4) #((a+2b)y) - Hay) < &by) - &- by) .

Y OO 0 U S IR Y RO Do e

_ ey

Integrating both sides of (5.4) with respect to G(dy) and using (3.14),

s

we get

iaa s aid .

(5.5) H(a+2b) - H(a) < H(b) - H(-b) .

Furthermore, the symmetry of @ and (3.14) implies that H is also

symmetric, in the sense that H(b) - H(0) = H(0) - H(-b) for b > O.

21
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(5.1) PROPOSITION. Assume g < ¥, and that (3.1) holds.

(a) If g 1is non-negative, then

1 o2 EL > /Eg(®) + (B0 .

n » o

(b) If {g(Xn) : n. 1} is uniformly integrable, then

lim nl/2

n > ®

Ln = gEg(B) =« (B-a) .

Assumption (3.1) and Proposition 2.5 guarantee that if g < M, then
(5.2) g(Xn) = og(B) ,

as n >, If g is non-negative, then Fatou's lemma can be applied to

(5.2) to conclude that

Eg(B) < lim Eg(X) ,

n+*>x

proving (a). On the other hand, it is well-known (see CHUNG (1974), p. 96)

that uniform integrability implies that
Eg(B) = lim Eg(Xn) ,

n>x

proving (b).

20




(4.10) EXAMPLE. Let b : C[0,1] » R be defined by

1/2

b(x) = x(t#)/(er(1-ex)) !/

where t* = inf{t > 0 : x(t*) = M*}, M* = max{x(t) : 0 < t < 1}. SCHRUBEN
(1982) showed that (b2°F)(B) has a chi-square distribution with 3 degrees

of freedom. Consequently,

va g_(B) (1(§m)1/2
so that
B(l) 9
~ o~ = t3m
/m gm(B)

where tan is a Student's-t RV with 3m degtees of freedom. Confidence
intervals based on Em(B) as defined above are the standardized maximum

intervals of [12}.

5. ASYMPTOTICS FOR STANDARDIZED CONFIDENCE INTERVALS

In this section, we study certain asymptotic properties of standard-
ized confidence intervals. In particular, we consider the asymptotics of
the expected length of such conf.idence intervals, as well as the end-point
variability of these intervals.

Now, from (3.15), it is clear that the width of the interval (3.15) is

given by

Ln = g(Yn) o (8-a) .

19
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. o1 1/2
Mmg 27 s2w) = DY?
i=0

where xi denotes a chi-square RV with m degrees of freedom. The

chi~square property of Em(B) makes standardized time series based on

d

Em particularly attractive, since in that case f
B(1) 9

1/2 ~ * ta d

(12m) gm(B)

where tm is the Student's-t distribution with @ degrees of freedom; the

limit Theorem (3.10) can then be used to construct confidence intervals for

L VS ST TR IR

#e. These confidence intervals, which were suggested by SCHRUBEN (1983),

are based on the so-called standardized sum process (?n(l) - u)/(lZm)l/2
8o (Y (D). 1
b
(4.9) EXAMPLE. The map b : C[(0,1}] » R defined by 1
1 ]
b(x) = [ [x(e)]| dt 1
0

also lies in the class Jl. Furthermore, the distribution of (be®)(B)

is known; see JOHNSON and KILLEEN (1983). However, the distributions of
* ~

both gm(B) and gm(B) are quite complicated, and this would appear

to limit the applicability of this method.

boniehsciitdintedclmeinnidoct ittt
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* ~
To calculate the distribution of g (B) and gm(B), it is convenient
to first find the distribution of (beI')(B). Note that the continuity of

B implies that

m 1
(4.8) 2] (TBY(/m) > [ (TB)(e)de
i=1 0

as m* *, a.s. The left-hand side of (4.8) is normally distributed with

mean zero and variance

1 m m
= 1 I cov[(rB)(k/m), (IB)(i/m)]
n° k=1 %=1
] m
1 5 k 2, _ k2
== L [min(z, <) = 55 ] = v(m) .
m? k=1 151 m’ w2

Note that v(m) 1is a Riemann approximation to the integral

1 1
/ [ [min(s,t) - st]ds dt

0 0
which has value 1/12. Thus, v(m) * 1/12; hence, taking characteristic
functions of both sides of (4.8) shows that the right-hand side of (4.8) is
normally distributed with mean-zero and variance 1/12. Since ADB, cen,
Am—lB are independent Brownian motions, it follows that

m-1

) lBi(l)l

Y12m g*(B) 2
m (=0

where BD’ cen, Bm_1 are independent standard Brownian motions; on the

other hand,

17
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intervals converge to those associated with a normal approximation. This

phenomenon is consistent with that observed in the method of batch means,
where it is known that as m » =, the Student's-t distribution approaches i
a normal.

A second "extension” method involves defining the class
:nz = {b el : pP{B ¢ D(b2°F)} =0} ,

where bz(x) = b(x) « b(x). The following proposition has a proof similar

to that of Proposition 4.2.

(4.5) PROPOSITION. If b < Jl,, then gm e H(m > 1), where

-1

~ 1/2

g, = (] b2°I"°Ai) 'z
1=0

The analogue to Proposition 4.4 is then given by

(4.6) PROPOSITION. g (B) > (E(b2ereB)/? a5 @+ .

Thus, confidence intervals based on Em(') will, for large m,

correspond to that associated with a normal approximation. We now turn to

* ~
S ' 's.
- some specific examples of g, S and g, S
T (4.7) EXAMPLE.  Let ‘b : C[0,1] » R be defined by
' 3 |
o b(x) = lf x(t)de| .

A 0
o |
L4 1
o 16 :
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(4.4) PROPOSITION. g;(B)/ml/z = E(beToB) as m +

PROOF. Note that

o1 1
) bere(m

/2 _ 1
M =0

g;(B)/m 2, gy .

i

{ml/Z

But AB:0<iK m} has the same distribution as a collection of =m

independent standard Brownian motions {Bi : 0<1i<m}, so

O@ denotes equality in distribution,. Of course, the strong law of large

|

numbers guarantees that
p o "
= ] beleB, » E(bel°B)  a.s. ]
m i J
i=0 ']
b
as m + o, proving the result. 3
Thus, if E(beleB) < =, we observe that h
R
/2,3 g
m* (Yn(l) 1y - *ml/ZB(l) ¢
gm(Yn)/E(b°I‘°B) gm(B)/E(bor‘oB) 5
pj as n > », where the limit RV, for large m, is the normally distributed g
_. quantity B(l). Hence, as the method of standardized time series is 1
:ﬁ extended to more and more increments, the corresponding confidence ]
Bﬁ ]
&
Y ]
- ;
: -
o 15 :
[}: P

o

e T T S B S e R S e
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(4.3) Wi = PoAi s

‘Yi "Yi°r .

It is evident from (4.3) that

) 7
g = boy, = be¥ ol ,
L R -
so that if
I
b = bo¥,
m e 1

* *
we have a representation of g, of the form 8y = bmoF.

Clearly, bm satisfies (3.11i). For (3.11ii), observe

that AiB is a

Brownian motion so (3.11ii) implies that (boFoAi)(B) >0 a.s. for

0 <1i<m thus yielding (3.11ii) for bm.

For (3.1111i), note that the continuity of Ai implies that

x m—1
D(gm)C U {x: Alx « D(beD)}
i=0
so that
* m-1
P{B e D(g )} < ] P(AB < D(beD)} .
i=0

But AiB is a Brownian motion so that (3.11iii) shows that

P(AB € D(beT)} = 0 for 0 < i <am, ylelding (3.1111) for

*
It is of some interest to consider the behavior of gm(B) for large .
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As we have already seen, the fundamental assumption of the method of

e e B Bn B,

standardized time series is that the output process may be approximated by
a Brownian motion. Intuitively, then, it should follows that the
increments of the output process can be approximated by the increménts of
Brownian motion. This suggests that one might try to extend the power of :
the method of standardized time series by applying the procedure separately
to each increment of the output process, and then “"patching” the increments
together. In some sense, this phenomenon occurs in the method of batch
means, and is related to the somewhat arbitrary nature of the parameter ;
m. In any case, we now present two "extension" methods.

Let Ai : ¢[0,1] » C[0,1] be the map defined by
(A;x)(e) = x((1+t)/m) - x(1/m) , 0<t<l

for 0 <1i<m (m> 1); the key to our first “"extension” procedure is the

following result.

*
(4.2) PROPOSITION. If b ¢ T, then &n eM (m> 1), where

PP PP T AR TN S vy vy

% mE 1
g = beTleA, .
m 120 i

Py

* *
PROOF. We shall show g, can be represented as &y ™ meP, where

PRI

*
bm € N, thereby proving that gy € M*. Let ¥, : C[0,1] »C[O0,1] Dbe

i
given by

i (¥, (8) = x((1+t)/m) = x(1/@)(1-t) = tx((1+1)/m)

o for 0<t<1l (0<1<m. The following relations are easily verified:

Aia A A K & K SAN M XN & 8 8T8 Akt At 8
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H 291/2
800 = [G2D [ (g x(t/m) - x(D/w) 1z,

B 1

where Ah x(t) = x(t) - x(t - 1/h). Note that Am B(i/m) (i =1, ..., m)

are increments of standard Brownian motion, and are therefore independent

N TIPS

and identically distributed normal RV's with mean zero and variance 1/m. 5
.'.1

Also, B(l)/m 1is the sample mean of these increments. Hence B(l)/gm(B) -]
has a Student's-t distribution with m-l1 degrees of freedom. :
On the other hand, %

S -1/2(1 T 1 T 241/2 :

g (¥) = [ J (z()-= T 2z ()] ..
m n 1 i=1 i m j=1 3 ?h
where :U
in/m &

Z.(n) = | Y(s)ds/(n/m) .

i -]

(i‘l)n/m _"_]

2

is the {i'th batch mean of the process {Y(t) : 0 < t { n}. Specializing .
Theorem 3.9 to our example therefore allows us to conclude that i

m m u
fa (& PREACEIY L PG -2 PREACY 212
= = J=

PR JJ.'

as n +» @, where tm—l is a Student's-t RV with m-1 degrees of

freedom. To summarize, we have just shown that the method of batch means,

o

with the number of batches fixed at m > 2, is asymptotically valid under

e
S,
P |

condition (3.1). This result complements a similar theorem due to

‘.
'

BRILLINGER (1973).
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PCY_(1)-p)/g(¥) < x} > H(x)

as a+ o for all x € R. Hence, to obtain a 100(1-8)% confidence
interval, one selects a and P such that H(B) - H(a) = 1-8 (such «,8
exist since H(e) is continuous; also, (3.14) implies that H(+) 1is

strictly increasing). Then, the interval
(3.15) [Yn(l) - g(Yn)B, Yn(l) - g(Yn)a]
is an asymptotic 100(1-8)% confidence interval for .

The process (§n - uk)/g(?ﬂ) is called a standardized time
series. Theorem 3.9 and Proposition 3.12 show that every b ¢l gives
rise to a particular standardized time series procedure; (3.15) is then the

corresponding confidence interval for u.

4. EXAMPLES OF STANDARDIZED TIME SERIES
Our first example of a standardized time series captures a methodology
which has been extensively studied in the simulation literature, namely the

method of batch means.

(4.1) EXAMPLE. Let bm : C[0,1] » R be defined by

2]1/2

m
b (x) = [(==p) 151 (x(1/m) = x((1-1)/m))

3

for m > 2, It is easily verified that bm € N, so that gm = bm o' ¢ M

(see Proposition 3.12). But

11
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(F(x-Bk))(t) = x(t) - Bk(t) - t(x(1) ~ Bk(l))

= x(t) - tx(1) = (I'x)(t)

so [(x-Bk) = I'x; hence, g(x-pk) = g(x).

To prove that H < ‘M*, consider g ¢ ‘. We claim that g can be
represented in the form g = bel, by setting b = g. Recall that g(x) =
g(x-Bk) for all B ¢ R. In particular, setting B8 = x(l), we see that
g(x) = g(Tx), proving our assertion.

We can now obtain the following result.
(3.13) PROPOSITION. If g ¢ M, then B(l) 1is independent of g(B).

PROOF. It is well known that the process B(t) - tB(1) (0 < t 1) is
independent of B(l) (see p. 84 of [l], for example). In other words, IB
is independent of B(l), which, of course, implies that g(B) = (boT)(B)

is independent of B(l).

Let &(x) = P{B(1) < x}, G(x) = P{g(B) < x}, and H(x) = P{B(1)/g(B) < x}.
Then,

(3.14) H(x) = [ &(xy) G(dy)

0
by Proposition (3.13). The continuity of &(¢) and the bounded
convergence theorem imply that the right-hand side of (3.14) is continuous
everywhere in x. Thus, by (2.1) and (3.10), it follows that under the

conditions of (3.1),

10
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where the last equality is due to (3.81ii). These observations immediately

yield the theorem.

The proof clearly indicates the role of Assumption (3.8ii); this
conditlon guarantees that g(Xn) does not depend on the unknown parameter
e

To construct confidence intervals based on (3.10), we need to learn
more about the limit RV B(1)/g(B). We start by obtaining an alternative

description of M. Let T : C{0,l1] » C[0,1] be the map define by
(rx)(t) = x(t) - ex(1) .

Let J1  be the class of functions b : C[0,1] » R which satisfy:
(3.11) (1) blox) = ab(x) for a« > 0, x ¢ C[0,1],
(i1) P{(beT)(B) > 0} = 1,
(111) P{B € D(beT)} = 0.

Set M* = {g : g = bel", b ¢ M}.
(3.12) PROPOSITION. HE = M

PROOF. We first show that H* = M. Suppose that g = bel, where

b e J. Clearly, g satisfies (3.81), (3.8iii), and (3.8iv). For (3.8ii),

observe that

et e et
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(5.8) THEOREM. Suppose g ¢ M. Then

6(g) > & 1(1-8/2)

where ¢71 is the inverse of the normal cumulative distribution function

&.

PROOF. By Lemma 5.7, we may scale g so that
z(g; 1-6/2) =1 .,
Now, (5.9) implies that
H(1) = 1-8/2 ,

or

[ Ay) G (dy) = 1-8/2 ,
0 g

where Gg(dy) = P{g(B) « dy} (see (3.12)). Thus, we are to show that

F (5.10) ¢(g) = Eg(B) « z(g; 1-6/2)

& -

o - [ Q- dy > €la-8/2)
Lo 0

-4

& subject to

’:':. @®

(- (5.11) [ &y) G (dy) = 1-8/2 .
(. 0 g

"

®

E:_ Integrating by parts, we find that

.

"

'

o

l_‘,::

&N 23
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é Xy) Gg(dy) = [&y) Gg(y)l0 + g Gg(y) o(y)dy
= [ G (y) ¢(y)dy ,
o §& '

where Eg(y) =1 - Gg(y) and ¢(y) is the normal density function.

Let K(y) be the distribution function defined by

0; y<p
K(y) = {
1; y2p

where p = ¢Fl(1_5/2), Note that

-]

é K(y) ¢Cy)dy = 1-58/2

and

@

[ K(y)dy =p ,
0

where K(y) = 1 - K(y). Thus, we can reformulate (5.10) and (5.11) as:

show that

(5.12) / (Eg(y) - K(y))dy > 0
0 .

subject to

(5.13) / (Eg(y) - K(y)) o(y)dy =0 .
0

Since ¢ 1is strictly decreasing on [0,»), and because

24
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Eg(y) - K(y) <O for y<p,

Eg(y) - K(y) >0 for y>p ,

it follows that
P _ _ P _ -

(5.14) f (Gg(y) - K(y))dy « o(p) > [ (cg(y) - K(y)) o(y)dy .
0 0

and

(5.15) i (E:g(y) - K(y))dy » o(p) > (§g<y) - K(y)) o(y)dy .
p P

Adding (5.14) and (5.15) together, we get
[ (G (y) - K(y))dy « o(p) > [ (G _(y) - K(y)) &(y)dy .
o 8 o 8

Relation (5.13) then yields (5.12).

(5.16) COROLLARY. Suppose g ¢ M 1is non-negative. Under Assumption

(3.1),

lim nl/2

n > o

EL > 20 s t1-5/2) .

This corollary follows immediately from Propositions 5.1 and 5.3, and

Theorem 5.8. The lower bound of Corollary 5.16 has an important

interpretation. Consider a steady-state simulation. output analysis

1
i
t
|
|

algorithm which i{s based on constructing an estimator S, which

consistently estimates o:

25
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;ﬁi as n * «, Among the algorithms of this type are the regenerative method }
f;i of simulation, spectral methods, and autoregressive procedures (see
bf ‘ Chapter 3 of BRATLEY, FOX and SCHRAGE (1983) for a description of these ‘
o _ |
${ techniques). The following proposition is a straightforward application of
f~ the converging-together lemma (see p. 25 of [l]).
4 (5.18) PROPOSITION. If s, is an estimator satisfying (5.17), then

(3.1) implies that
1@ /2,3
(5.19) n (Y (1) - w/s =B,
g as n » =,
, . The weak convergence result (5.19) permits construction of asymptotic
:' 100(1-8)%Z confidence intervals for pu:
!) _ s, - Sy
(5.20) [Yn(l) - 2(8) —77 Y (1) + a(8) W] ,
N n n
- where z(8) = ¢71(1-6/2). If Ln is the length of the iaterval (5.20), it
'.¢ is clear that as n * =,
L
L (5.21) al/2 L = 2 s (1-8/2) , |
- ;
[

which is precisely the lower bound of Corollary 5.16. If {sn; n>l} is

- uniformly integrable (conditions guaranteeing this appear in GLYNN and }

IGLEHART (1985b), Section 6), then we further have that
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(5.22) lin ol/? EL_ = 20 g l1-6/2) .

n-< o

Corollary 5.16, and the limit tﬁeorems (5.21) and (5.22) suggest that,

from the viewpoint of expected confidence interval length, output analysis

methods which consistently estimate o dominate standardized time series !a
procedures asymptotically. ;;
One further point, pertinent to expected confidence interval length, E%

remains to be investigated. The examples of Section 4 show that for any ;
k > 1, there exists g € M such that B(l)/gk(B) has a Student's-t ;}
distribution with k degrees of freedom. If gk(xn) is uniformly -3
integrable, then it follows that if Ln(k) is the length of such a E:
d

confidence interval,

o, e

-1
tm 0/ EL_() = 20 B (1-8/2)
n->o n _-j
<]
where H;l(p) is the pth quantile of a Student's-t with k degrees of ‘3
-

.
74

Vo .
)

freedom. Since

KRN

B
2

lim H;l(l-é/z) - s 1-8/2)
k>

RN, _E&

this discussion suggests that
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(5.23) inf Un o2 EL_ = 20 87H1-8/2)
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thus, the lower bound of Corollary 5.16 is tight. Relation (5.23) raises

the question of whether there exists g ¢ ¥ such that

(5.26) s o2 EL =20 5 0-8/2)

n>o

in other words, is the lower bound attained within M ?

A glance at the proof of Theorem 5.8 shows that :
-1
6(g) > @ "(1-8/2)

unless Gg(dy) is a point-mass distribution. Thus, in order to find

g € H satisfying (5.24), it must be that
(5.25) P{g(oB) = ao} = 1
for some a > 0. Our next result shows that such a g cannot exist.

(5.26) PROPOSITION. There exists no g ¢ M such that (5.25) holds.

PROOF. We will prove something stronger: the requirements
P{(B ¢ D(g)} = 0 and (5.25) are incompatible. We start by showing that for

every x ¢ 00[0,1] = {x € C[0,1] : x(0O) = 0} and € > O,
(5.27) P{p(oB, x) < €} > 0 .

To see this, fix x ¢ Co[O,ll and 8> 0. Since [0,1] {is compact, x 1is

uniformly continuous on [0,1], so there exists N = N(e) such that

28
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3

(5.28) Ix(t) = x(k/N)| < e/4

for kN < t < (k+1)/N, where 0 < k < N. Now, the independent increments

of Brownian motion imply that if Az(k/N) = z((k+1)/N) - z(k/N), then

(5.29) P(A(¢))

P{])oAB(k/N) - Ax(k/N)| < e/4N,

o max IB(t) - B(k/N)|] < e/2, 0 <k < N}
k/N<e<(k+1) /N
N-1
= 1 P{]oaAB(k/N) - ax(k/N)| < e/4N,
k=0
o max |B(t) - B(k/N)| < e/2} > 0,
k/NSt<(k+1) /N

by virtue of the fact that for any z with [z| < n, P{|B(t) - z[ < n,

BAX) oce |B(s)| < 2n} > 0. Now, on the event A(e), a simple triangle

inequality argument shows that

|oB(t) - x(e)]| < ¢

for 0<t <1 (use (5.28)), proving (5.27).

From (5.27) and (5.25), it follows that for some o> 0
P{p(oB,x) < €, g(oB) = ac} > 0 ,

so that there necessarily exists y = y(x,¢) such that opo(y,x) < € with

g(y) = ao. Thus, the range of g over any ec-neighborhood of x contains

the set {ao: o > 0}; clearly, then g can not be continuous at x.
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Hence, x ¢ D(g). Since =x was arbitrary, this implies that D(g) =

CO[O,l], violating the assumption P{B ¢ D(g)} = O. -

. Al

We now turn to the question of end-point variability. To be precise,

observe that if g ¢ M, then (3.1) implies that "

(5.30) al/2 L = og(8) ()

as n > > (see (5.2) for a more complete argument). The limit distribu-
tion of the confidence interval length is, of course, degenerate if (and )
only if) g(B) 1s degenerate. Suppose that, in fact, g(B) 1is degenerate
so that there exists a such that P{g(B) = a} = 1. Note that a> 0 by

- (3.81i1). On the other hand, it follows from (3.81) that

(5.31) P{g(oB) = aao} = 1

for all o > 0. But (5.31) is, of course, just (5.25); Proposition 5.26

therefore proves that no such g can exist. Consequently, we may conclude 1
that g(B) must be non-degenerate. The limit theorem (5.30) therefore
: states that Ln exhibits non-degenerate random fluctuatjions of order
-- n_l/Z.
) Another way to quantify the above phenomenon is to examine the

2
quantity E(Ln ELn) .
’" (5.32) PROPOSITION. Lf {gz(xn): n > 1} 1is uniformly integrable, then

under (3.1),
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(5.33) lim nE(Ln - ELn)Z = GZE(g(B) - Eg(B))2 (a-a)2

n-+>x»

provided g € H. Furthermore, the right-hand side of (5.33) is positive.

PROOF. The uniform integrability of {gz(xn): n > 1} implies that of

{g(xn): n> 1} (see p. 100 of [4]), so

lim ol/2 Eg(Y ) = 1lim Eg(X ) = Eg(B) ,
n n
n+* n-+*oo
and

lm n Egz(?n) = lim Egz(xn) = Eg2(B) ;
n -+ n-+o
combining the above two limit relations yields (5.33). As for the
positivity, this follows from the non-degeneracy of g(B) for g ¢ K.

We now wish to compare the end-point variability of standardized time
serles procedures to that obtained via methods which consistently estimate
6. Our analysis will be restricted to the regenerative method of
simulation; we do this only because the required limit theorems are
available 1in this context.

1/2

As (5.21) indicates, n Ln converges to a dcgenerate r.v. Thus,

Ln asymptotically exhibits no random fluctuations of order n-l/z. We

can, in fact, be more precise.

(5.34) PROPOSITION. Let Y be a regenerative process satisfying
E((Yllfl)9 + 1?) <= (see (3.3) for the definition of Y (|f]|) and
10). Then, 1if sn is the regenerative estimator for o, there exists n

such that
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(5.35) (i) n(Ln - ELn) =» nN(0,1) as n + o ;

2

2 2
(ii) n E(Ln - ELn) > n as n »> @ ,

PROOF. Under the above moment hypothesis, there exists « such that

1/
n

(5.36) 2(sn-c) => «N(0,1) ,

as n » =; furthermore, the sequence {n(s -0)2: n> 1} is uniformly
n 2

integrable (see Sections 5 and 6 of [7]). Thus,

- 22(6)0)

(5.37) nE(Ln 72

-0,

as n + »; combining (5.36) and (5.37), we get (5.351). For (ii), we use

the uniform integrability to obtain
nE(s -og) » K2 ;
n
this evidently implies that
2 2 2 2
n E(Ln ELn) +> 427(8) «

proving (ii).

We conclude that the end-point variability of the regenerative

confidence interval is of order n-l, as opposed to

standardized time series.
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6. SUMMARY

Building on work of SCHRUBEN, we have developed a general framework
for the analysis of standardized time series. Under mild-assumptions on
the output process (see (3.1)), the method of standardized time series
produces asymptotically valid confidence intevals for steady—state
parameters. However, these intervals are asymptotically larger (see
(5.16)) and more variable (see (5.33)) then those steady-state intervals
obtained by a method which consistently estimates the appropriate steady-
state variance constant (such as the regenerateive method). In this sense,
standardized time series confidence intervals are asymptotically less
desirable then those constructed by a consistent estimation.

These results do not, however, preclude the possibility that standard-
ized times series may be superior in certain small sample context; this

remains an area for future work.
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